DSD variability: normalization and retrieval

A. Berne and T. Raupach

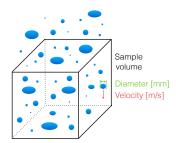
Environmental Remote Sensing Laboratory EPFL, Lausanne, Switzerland

PMM Science Team Meeting - San Diego - Oct. 18, 2017

The raindrop size distribution (DSD)

 Concentration in air of raindrops with equivolume diameter in [D, D + dD):

- Weighted moments \rightarrow rainfall variables.
- Measured at point scale by disdrometers.
- ullet DSD variable in space and time o various normalizations.



Introduction

Double-moment normalization of the DSD

The
$$n^{\text{th}}$$
 moment of the DSD is $M_n = \int_0^\infty D^n N(D) dD$ [mmⁿ m⁻³]

With moment orders i & j, DSD can be written (**Lee et al. JAM 2004**):

$$N(D) = M_i^{(j+1)/(j-i)} M_j^{(i+1)/(i-j)} h(x),$$

where x is a normalized diameter:

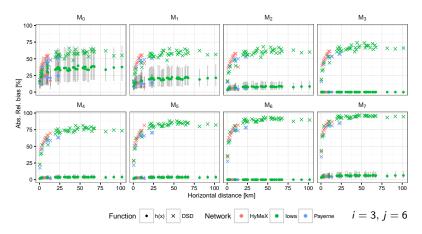
$$x = DM_i^{1/(j-i)}M_j^{-1/(j-i)}.$$

To estimate the DSD we need three ingredients: $h M_i$ and M_i

- How variable is the double-moment normalized DSD h in space?
- Can the double-moment normalization be used for radar DSD retrieval?

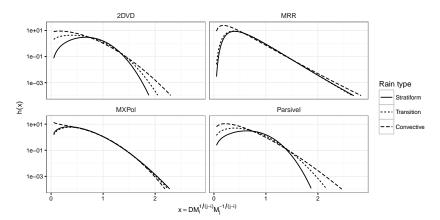
Instrument networks

Changes in the horizontal



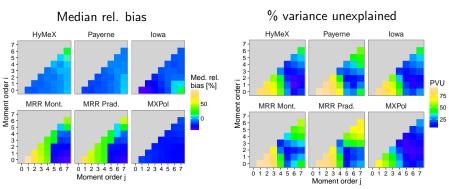
- normalized DSD "collapses" spatial variability.
- Similar for vertical variability (although larger remaining variability).

One fitted model per instrument type



- Models trained on HyMeX (France) data only.
- Can they be used in other regions?

Performance by region in stratiform rain



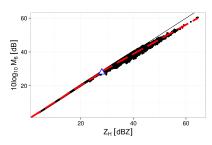
- Model trained in France can be applied to other regions.
- Best performance with varied moment orders (e.g. 1 and 6).
- ullet With best combination, \geq 85% of DSD variance can be explained.
- \Rightarrow For DSD retrieval, h can reasonably be assumed invariant in space.

DSD retrieval

We have h, so we need two moments to retrieve the DSD.

Moment 6

- Retrieved using Z_h power laws.
- Split into two regimes at 28 dBZ (X-band).



Moment 3

- Z-weighted mean drop axis ratio $\widehat{r_m}$ estimated using Z_{DR} .*
- M_3 retrieved using $\widehat{r_m}$ and K_{dp} .
- Coefficients per raindrop axis ratio function.

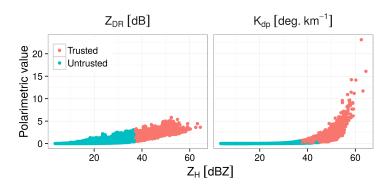
Parameterization

- 60% of DSDs from HyMeX, Payerne, and Iowa.
- Simulated variables at X-band.
- Temps. of 5, 10, and 15°C.

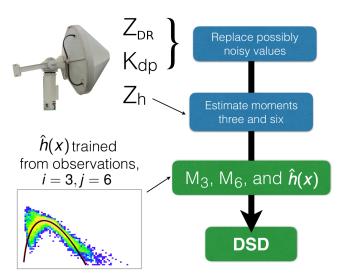
^{*} See Jameson JAS 1983, Kalogiros et al, IEEE TGR 2013.

Dealing with radar noise

- $Z_{\rm DR}$ and $K_{\rm dp}$ can be noisy.
- ullet Threshold on $Z_H <$ 37 dBZ, $K_{
 m dp} <$ 0.3 $^{\circ}$ km $^{-1}$, $Z_{
 m DR} <$ 0.2 dB.
- In this case, $Z_{\rm DR}$ and $K_{\rm dp}$ predicted from Z_H .

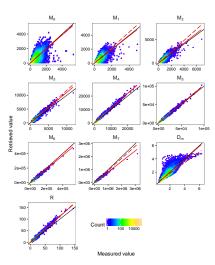


DSD-retrieval method



stroduction DSD invariance DSD retrieval (Results) Conclusion

Results with simulations



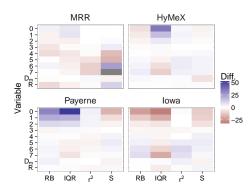
HyMeX results, Beard axis ratios.

- Simulated radar variables from disdrometer measurements.
- Compared against SCOP-ME (Anagnostou et al. AR 2009, Anagnostou et al. JH 2010, Kalogiros et al. IEEE TGRS 2013).
- Four different raindrop axis ratios (Beard 1987, Andsager 1999, Brandes 2002, Thurai 2007).
- Performances similar, on average DM has slightly lower bias for moments two to seven, D_m, R.

ntroduction DSD invariance DSD retrieval (Results) Conclusion

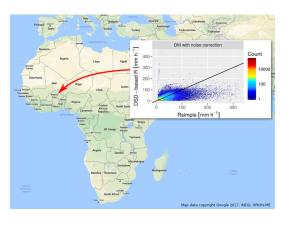
Results with real radar data

- Compared against Parsivels on ground in HyMeX, Payerne, and lowa.
- In HyMeX, also compared against DSDs estimated aloft by an MRR (DM model trained for MRR data).
- Similar results for 2 algorithms;
 DM slighty better on MRR and lowa data.



Reds show performance better with DM.

Tests in Africa



- X-band radar data from Burkina Faso
- Provided by M. Gosset and M. Kacou (IRD, Toulouse, France).
- h(x) retrained using local disdrometers.
- Promising results:
 DSD-based R matches closely to Z-R-based R.

troduction DSD invariance DSD retrieval Results (Conclusions)

Conclusions

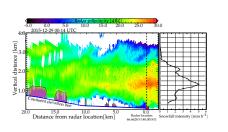
- Relative invariance of the double-moment normalized DSD h(x).
- A new DSD-retrieval technique based on the double-moment normalization approach.
- Flexible, since there is no prescribed form of h(x).
- Future work: remaining variability in h(x), other radar wavelengths, other rain climatologies.

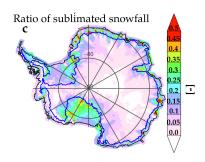
Raupach & Berne, Invariance of the double-moment normalized raindrop size distribution through 3D spatial displacement in stratiform rain, JAMC, 2017, 10.1175/JAMC-D-16-0316.1

Raupach & Berne, Retrieval of the raindrop size distribution from polarimetric radar data using double-moment normalization, AMT, 10, 2573-2594, 2017, amt-10-2573-2017

troduction DSD invariance DSD retrieval Results (Conclusions)

Precipitation and katabatic winds in Antarctica





Significant low-level sublimation of snowfall

(Grazioli et al., PNAS, 2017)

Poster initially planned yesterday, but now displayed on board #207 (thanks Walt!)

troduction DSD invariance DSD retrieval Results (Conclusions)

Thank you

Rainfall over mountains in Ardèche during HyMeX 2012 SOP

Moment 3 retrieval (1)

1. Retrieve radar-weighted mean raindrop axis ratio r_m [-] from Z_{DR} , using polynomial fit:

$$\widehat{r_m} = \sum_{i=0}^5 c_i Z_{\mathrm{DR}}^i.$$

2. Use relationship between LWC and M_3 to derive (338.4 for X-band):

$$M_3 = \frac{338.4}{\widehat{C}} \frac{K_{\rm dp}}{(1 - \widehat{r_m})},$$

3. Polynomial fit and representative (mean) value of \widehat{C} are parameterized per axis ratio function.

Moment 3 retrieval (2)

Liquid water content W [g m $^{-3}$] (with water density $\rho_{\rm w}$ g cm $^{-3}$):

$$W = \frac{\pi}{6} 10^{-3} \rho_w M_3,$$

and $K_{\rm dp}$ can be written (Jameson JAS 1985) :

$$K_{\mathrm{dp}} = \left(\frac{180}{\lambda}\right) 10^{-1} CW(1-r_m),$$

with $C \sim 3.75$ (Bringi and Chandrasekar, 2001).